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概要
Escassut と Sarmant は, hyper-infraconnected set 上の strictly injective analytic element

は, 一つの因子が他の項を支配するような一次の有理関数の無限積で表示できるかという問題を
提案した. この問題は今まで未解決であったが, infraconnected affinoid set 上で成り立つこと
が初等的な p-進解析の手法で証明されたので, それを報告する. 証明の鍵は, strictly injective

analytic element を Mittag-Leffler term により特徴づけたことである. この主張は, よく知ら
れている閉円盤上の analytic function が strictly injective になる特徴づけを拡張したものに
なっている.

1 導入
本稿では, 論文 [5] によって報告された結果の概要を述べる.

複素解析において, 正則関数はテイラー展開可能であるという定理は, 非常に重要な結果の一つで
ある. 非アルキメデス的付値体上で類似の結果が成り立つか考察すると, 微分可能であるがテイラー
展開可能でない例はすぐに見つかる. そこで逆に, 非アルキメデス的付値体上では, テイラー展開可能
であるような関数を「解析的関数」であるということが多い. 「解析的関数」は, 局所的に解析的な
関数を指すこともあれば, 大域的に解析的な関数を指すことがあったりと, 文脈によって様々に意味
はことなる.

そのような「解析的関数」のなかでも, 多くの研究者によって研究され, 興味を持たれてきた対象
として Krasner が導入した analytic element というものがある. Analytic element は, 有理関数の
一様収束先として表現できる関数のことで, 定義域がどのような集合であっても, その上の analytic

element を定義することが可能である. Analytic element は定義域に性質が依存することが多く, 例
えばある集合の上の analytic element は解析接続を満たすが, そうでない集合の例を構成することも
可能である. Analytic element の性質については [1] と [3] が詳しい.

本稿では, 定義域が infraconnected affinoid set である analytic element に関する結果を述べる.

Infraconnected affinoid set とは, 簡単にいうと, その上の analytic element のなす Banach 代数
がリジッド解析における, affinoid algebra でかつ整域になっている集合のことである. そのため,

infraconnected affinoid 上の analytic element は豊富な性質をもつことが期待される. 本稿では
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strictly injective という性質に注目する.

2 準備
K は非自明な付値 | · | : K → [0,∞) による, 代数的に閉である完備非アルキメデス的付値体とす

る. |K×| によって K の付値群を表す.

K の元 a と正の実数 r > 0 に対し, D(a, r) を中心 a, 半径 r の閉円盤, D(a, r−) を 中心 a, 半径
r の開円盤とする:

D(a, r) = {x ∈ K : |x− a| ≤ r}, D(a, r−) = {x ∈ K : |x− a| < r}.

更に, r ∈ |K×| に対し C(a, r) = {x ∈ K : |x− a| = r} を中心 a, 半径 r の円周とする.

K の部分集合 E に対し,

d(E) = sup
x,y∈E

|x− y| ∈ [0,+∞]

を E の直径とする. また, Ẽ によって閉円盤 D(a, d(E)) を表す, ここで a ∈ E である. ただし,

d(E) = +∞ のときは Ẽ = K とする.

K の元 a と, K の部分集合 E,E′ に対し, a と E の距離 (resp. E と E′ の距離) を d(a,E)

(resp. d(E,E′)) と書くことにする:

d(a,E) = inf
x∈E

|x− a|, d(E,E′) = inf
x∈E,y∈E′

|x− y|.

上記の記号を用いて, E の hole を定義する.

定義 2.1 ( [1, Lemma 2.1]). E を K の部分集合とする. このとき Ẽ \ E は一意に ⋃
i∈I Ti とい

う形に分割できる. ここで, 各 Ti は D(ai, r
−
i ), ri = d(ai, E), という形の開円盤である. 各開円盤

D(ai, r
−
i ), i ∈ I, を E の hole ということにする.

続いて, analytic element を定義し, 性質について確認する.

K の部分集合 E に対して, R(E) を E に極を持たない有理関数全体のなす K-代数とする:

R(E) := {f ∈ K(x) : f は E に極を持たない }.

更に, H(E) を E 上の一様収束位相によって, R(E) を完備化した位相的 K-線形空間とする. H(E)

の元を E 上の analytic element とよぶことにする. さらに, Hb(E) を E 上の有界な analytic

element 全体のなす集合とする. Hb(E) は, E 上の一様ノルム ‖f‖E := supx∈E |f(x)| によって
Banach 代数となる. また, E が非有界であるとき, H0(E) を無限遠点で消滅する analytic element

全体の集合とする:

H0(E) := {f ∈ H(E) : lim
x∈E,|x|→∞

f(x) = 0}.

よく知られている通り, E が有界かつ K の閉集合であるとき, H(E) = Hb(E) である ( [1, Theorem

10.2]). また E が開集合であるとき, E 上の analytic element f ∈ H(E) は古典的な意味で微分可



能である. すなわち, 任意の x ∈ E に対して

f ′(x) := lim
h→0,h ̸=0

f(x+ h)− f(x)

h

が存在する. 開集合 E 上の analytic element f が strictly injective であるとは, f が E 上の関数
として単射でかつ, E 上の各点 x に対して f ′(x) 6= 0 が成り立つときにいう.

ここでいくつか analytic element の具体例を紹介する.

例 2.2. a ∈ K, r > 0 とする. このとき,

H(D(a, r)) =

{
f(x) =

∞∑
n=0

an(x− a)n ∈ K[[x− a]] : lim
n→∞

|an|rn = 0

}

である. さらに f(x) =
∑∞

n=0 an(x− a)n ∈ H(D(a, r)) に対して次の等式が成り立つ:

‖f‖D(a,r) = max
n≥0

|an|rn.

例 2.3. a ∈ K, r > 0 とする. このとき,

Hb(K \D(a, r−)) =

{
f(x) =

∞∑
n=0

an
(x− a)n

: lim
n→∞

|an|
rn

= 0

}

である. さらに f(x) =
∑∞

n=0 an(x− a)−n ∈ H(D(a, r)) に対して次の等式が成り立つ:

‖f‖K\D(a,r−) = max
n≥0

|an|r−n.

K の部分集合 D が infraconnected であるとは, 任意の a ∈ D に対し, 写像

Ia : D → [0,+∞), x 7→ |x− a|

の像の [0,+∞) における閉包が連結, すなわち区間であるときにいう. Infraconnected な集合の上
の analytic element に対しては, その「連結性」から様々な定理が成り立つことが知られている. そ
の内の一つが Mittag-Leffler の定理である.

定義 2.4 ( [1, Theorem 15.1]). D を infraconnected な閉集合, f ∈ Hb(D) とする. また, (Ti)i∈I

を D の hole 全体の集合とする. このとき一意に f0 ∈ H(D̃) と fTi ∈ H0(K \ Ti), i ∈ I, が定まり
limi∈I ‖fTi

‖D = 0 を満たして, f = f0 +
∑

i∈I fTi
と表すことができる. f0 は f の principal term,

各 fi は Ti に関する f の Mittag-Leffler term という. さらに, これらについて次の等式が成り立つ:

• ‖f0‖D̃ = ‖f0‖D.

• ‖fTi‖K\Ti
= ‖fTi‖D (i ∈ I).

• ‖f‖D = max {‖f0‖D,maxi∈I ‖fTi
‖D} .

例 2.5. a ∈ K, r, s > 0 で r ≤ s とする. このとき,

H(D(a, s) \D(a, r−)) =

{
f(x) =

∞∑
n=−∞

an(x− a)n : lim
n→∞

|an|sn = lim
n→−∞

|an|rn = 0

}



である. さらに f(x) =
∑∞

n=−∞ an(x− a)n ∈ H(D(a, s) \D(a, r−)) に対して次の等式が成り立つ:

‖f‖D(a,s)\D(a,r−) = max
{
max
n≥0

|an|sn,max
n<0

|an|rn
}
.

続いて, Motzkin factorization を紹介する. 簡単のために, infraconnected affinoid set 上の
analytic element についてのみ考えることにする. ここで, K の部分集合 D が infraconnected

affinoid set であるとは D が次の形をしているときにいう:

D(α, r) \ (
m⋃
i=1

D(αi, r
−
i )) (r ∈ |K×|, ri ∈ |K×|, i = 1, · · ·m).

定義 2.6 ( [1, Section 32]). D を infraconnected affinoid set として, {T1, · · · , Tm} を D の hole

全体の集合とする. このとき一意に f0 ∈ H(D̃) と fTi ∈ H(K \ Ti), i = 1, · · · ,m, が定まり次の三
条件を満たす:

• f = f0
∏m

i=1 f
Ti .

• f0 の零点はすべて D に属する.

• 各 i = 1, · · · ,m に対し, fTi は K-代数 H(K \ Ti) の可逆な元で, さらにある整数 qi が存在
して lim|x|→∞(x− α)qifTi(x) = 1 を満たす.

f0 は f の principal factor, 各 fTi は Ti に関する f の Motzkin factor という.

Laurent 級数 f(x) =
∑

n∈Z an(x− a)n が limn→±∞ |an|rn = 0 を満たすとする. このとき, f の
零点の個数についての情報を持つ量を定める:

• ν+a (f, log r) = max{m ∈ Z : |am|rm = maxn∈Z |an|rn}.
• ν−a (f, log r) = min{m ∈ Z : |am|rm = maxn∈Z |an|rn}.

命題 2.7 ( [1, Theorem 23.1]). f ∈ H(C(a, r)) とするとき, f の C(a, r) 上の零点の個数は重複を
込めて ν+a (f, log r)− ν−a (f, log r) に等しい.

最後に, Escassut と Sarmant による予想を解説するために strongly copiercing sequence を導入
する.

定義 2.8. E を K の部分集合とする. そして, I を I = {1, · · · ,m} ⊆ N, m ∈ N, または I = N
を満たす集合とする. このとき, 一次有理関数の列 (x−an

x−bn
)n∈I が E に関する strongly copiercing

sequence であるとは次を満たすときにいう:

各 n ∈ I に対し, (an, bn) ∈ (K \E)2 かつ |an − bn| < d(an, E) を満たす. さらに, I = N のとき
は limn→∞ |an − bn|/d(an, E) = 0 を満たす.

定義から E に関する strongly copiercing sequence (ϕn)n∈N は limn→∞ ‖ϕn − 1‖E = 0 を満た
すため, 無限積 ∏

n∈N ϕn は H(E) で収束する.



3 Escassut と Sarmant による予想
まず Escassut と Sarmant による予想を述べる.

予想 3.1 ( [4, Conjecture 1]). D を hyper-infraconnected set でかつ開集合とする. このとき
analytic element g ∈ H(D) が strictly injective である必要十分条件は, 一次有理関数 f ∈ R(D)

と D に関する strongly copiercing sequence (ϕn)n∈I が存在して次の二条件を満たすことである:

• g = f
∏

n∈I ϕn.

• 任意の n ∈ I に対し ∥∥∥∥ f

f ′ϕ
′
n

∥∥∥∥
D

< 1.

ここで infraconnected set D が hyper-infraconnected であるとは, 任意の a ∈ D̃ と
r ∈ [d(a,D), d(a,K \ D̃)] ∩ |K×| に対し, 有限個の元 a1, · · · , am ∈ C(a, r) が存在して,

C(a, r) \
⋃m

n=1 D(an, r
−) ⊆ D を満たすときにいう.

このセクションでは予想 3.1 に関する先行研究について紹介する. まず簡単な計算によって次の命
題が成り立つ.

命題 3.2. 一次有理関数 h(x) は (h(x)− h(y))2 = (x− y)2h′(x)h′(y) を満たす.

実は, strictly injective な analytic element には上の命題と類似した結果が成り立つことが期待さ
れる.

定理 3.3 ( [4, pp.158–159, Theorem]). D を hyper-infraconnected set でかつ開集合とする. また,

予想 3.1 が正しいと仮定する. このとき, strictly injective な analytic element g ∈ H(D) は次の等
式を満たす:

|g(x)− g(y)|2 = |g′(x)g′(y)||x− y|2 (x, y ∈ D).

一方で, 上の定理に関しては, D が infraconnected affinoid set であるときは, Rivera-Letelier が
直接の証明を与えた.

定理 3.4 ( [6]). D を infraconnected affinoid set とする. このとき, strictly injective な analytic

element g ∈ H(D) は次の等式を満たす:

|g(x)− g(y)|2 = |g′(x)g′(y)||x− y|2 (x, y ∈ D).

加えて, [2] において Escassut は定理 3.4 の別証明を与えた. しかし, 定理 3.4 は, D が infracon-

nected affinoid set である場合の予想 3.1 を導くわけではないことを注意しておく.

最後に Escassut と Sarmant による予想 3.1 へのアプローチとして証明された有用な定理を述
べる.



定理 3.5 ( [4, pp.158–159, Theorem]). D を infraconnected affinoid set として, f ∈ R(D) を一
次有理関数とする. また, a ∈ D として, ϕ ∈ H(D) は |ϕ(a)| = 1 を満たす analytic element とす
る. このとき, 次の三条件は全て互いに同値である:

1. D の任意の hole T に対し,

‖ϕT ‖D
∥∥∥∥ f

f ′

∥∥∥∥
T

< d(T )

が成り立ちかつ, ϕ の principal term が次を満たす:

‖ϕ0 − ϕ0(a)‖D
∥∥∥∥ f

f ′

∥∥∥∥
D

< d(D).

2. ϕ は D に零点を持たず, D の任意の hole T に対し,

‖ϕT − 1‖D
∥∥∥∥ f

f ′

∥∥∥∥
T

< d(T )

が成り立ちかつ, ϕ の principal factor が次を満たす:

‖ϕ0 − ϕ0(a)‖D
∥∥∥∥ f

f ′

∥∥∥∥
D

< d(D).

3. ある α ∈ C(0, 1) と D に関する strongly copiercing sequence (ϕn)n∈I が存在して ϕ =

α
∏

n∈I ϕn と ∥∥∥∥ f

f ′ϕ
′
n

∥∥∥∥
D

< 1 (n ∈ I)

を満たす.

4 主定理
さて, 主定理を述べる. 主定理は定理 4.1, 4.2 である.

定理 4.1 ( [5, Theorem 2.9]). D を infraconnected affinoid set, {T1, · · · , Tm} を D の hole 全体
の集合とする. また, a ∈ D, f ∈ H(D) とする. このとき, f が strictly injective であることは, 次
の二条件のうちどちらか一つを満たすことと同値である:

1. ν+a (f0 − f0(a), log d(D)) = 1 かつ

‖f0 − f0(a)‖D > max
1≤i≤m

d(D)

d(Tj)
‖fTi

‖D.

2. ある j, 1 ≤ j ≤ m, に対して ν−αj
(fTj

, log d(Tj)) = −1 と

‖fTj‖D >
d(D)

d(Tj)
‖f0 − f0(a)‖D かつ ‖fTj‖D > max

i ̸=j,1≤i≤m

d(Ti, Tj)
2

d(Ti)d(Tj)
‖fTi‖D.

が成り立つ. ここで, αj ∈ Tj である.



定理 4.1 は Laurent 級数に対しては, 命題 2.7 を用いることで容易に示すことができる. 一方で,

一般の infraconnected affinoid set に対しては非自明な主張となる. 理由を簡単に説明すると hole

が二つ以上存在するときは, Mittag-Leffler term が互いに影響を及ぼしあうからである. 定理 4.1 を
応用することで, もう一つの主定理を得る.

定理 4.2 ( [5, Theorem 2.16]). 予想 3.1 は, infraconnected affinoid set に対して正しい.

証明は, strictly injective な analytic element g ∈ H(D) に対して次の三つのパターンに分かれる:

• g が D に零点を持つ.

• ‖g − g(a)‖D < |g(a)| が成り立つ.

• g が D に零点を持たずかつ ‖g − g(a)‖D ≥ |g(a)| が成り立つ.

証明は, 定理 3.5 の 1. または 2. を示すことによって完了する. その際, 上記の三つのパターンに
合わせて, Mittag-Leffler term や Motzkin factor のノルムを計算していくのだが, どの場合におい
ても定理 4.1 が証明の鍵となる.
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